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Abstract

The complexity of temporal dynamics in the three species food web model involving Holling
type-II functional response has been investigated analytically and numerically by varying the kill
rate parameter of the super predator. In thiswork, the system is shown to possess co-existing sta-
ble equilibrium population over a certain range of kill rate parameter of the super predator. The
transition from stable equilibrium point of coexistence to limit cycle behavior is also observed,
at a critical value of the kill rate parameter, as result of Hopf bifurcation. Power spectrum and
the bifurcation diagram of the food web system have been used to investigate the transition of
the system dynamics from regular to quasi-periodic and chaotic regime for increasing value of
the kill rate. Numerical computation of Lyapunov characteristic exponents for specific values of
the kill rates provides evidence of chaotic system dynamics or an strange attractor. The chaos
in such a system is shown to exhibit scale invariance characteristics as indicated by its fractal di-
mension. The multi-fractal behavior is further revealed in the temporal evolution of the system
through the existence of power law and other measures of the multi-fractal detrended fluctua-
tion analysis for different values of the kill rates of the super predator.

Keywords: functional response; food web; Hopf bifurcation; chaos; power spectrum; bifurca-
tion diagram; multi-fractal analysis; power law.
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1 Introduction

The evolution of any ecosystem is governed by different interactions among the various species
in it [28]. The phenomenon of mutual co-existence among species in an ecosystem with fluctua-
tions in species abundance was first discussed mathematically in [23, 43]. The study of dynamic
relation between predators and prey is of considerable interest to ecologist [33, 42]. The charac-
teristics of predation and parasitism with the functional responses representing ecological inter-
actions has been investigated earlier. De Angelis et al. discussed the model of tropic interaction
in his study [10]. Further Beddington [3] studied the effect of mutual interference on searching
efficiency while later Berec [4] analyzed the impact of foraging on predator prey dynamics.

In the last two decades the dynamics of realistic ecological models [22] and complexity of three
species food chain model [24] have been analyzed with different types of functional responses
[7, 32] to study the effect of various factors such as prey refuge [13]and group defense [34] using
latest techniques of non linear analysis [29]. The main advantage of developing the model lies
in possibility of simulating evolution of the growth of different species and to study the effect of
interaction of different species in the ecosystem on the sustainability of species. Laboratory exper-
iment, on the predator-prey interaction on bacterivorous ciliate and two bacterial prey species, by
Becks et al.[2] has also confirmed chaotic behavior in the observed aperiodic population oscilla-
tions.

Several studies in the area of physics[6], ecology [31], biology [21, 26], physiology [5, 8],
neuro-bioscience [9], environment science[11], economics [25], etc., have also suggested the im-
portance of identifying embedded scale invariant structure- a characteristic property of fractals
[27]. Fractal analysis of time series is relatively a new approach to study the chaotic dynamics in
evolving systems [37, 45]. In ecology, multi-fractal analysis technique [35, 36] has been applied
mainly to characterize species-area and species-abundance relationship in a spatial context. The
importance of the study on the fractal properties of time series in ecology has been suggested by
[40] in relation to persistence of rare species. Complexity of hierarchically generated patterns over
distinct time scale in ecology can be resolved by accurate modeling of temporal patterns in time
series [1, 40]. Fractal analysis has been used recently to understand complex animal behavior and
their conservation- particularly in relation to marine mammals [1, 38].

The investigation of the dynamical complexity of three-species continuous-time food chain,
involving Holling type-II [16] functional response, by Hasting and Powell [15] revealed chaotic
oscillations in the foodwebmodel. Themodel [15] was further shown to exhibit chaotic dynamics
on varying the mortality rate of the predator at the middle level [39]. As the predation rate plays
an important role in controlling population of species at different levels, it is important to study
the model evolution with varying attack/ kill rate at higher trophic [2, 27].

We therefore revisit the basic food web chain model [15] with a view to understand the global
dynamical complexities of the system as a result of varying the attack/ kill rate of the super preda-
tor and also the coexistence of species. We carried out extensive numerical simulation of model
equations for different attack/ kill rate of the super predator and analyze the simulated data on
species population using power spectrum, bifurcation diagram and phase portrait. Beside the
linearly stable equilibrium points for coexistence of the species, Hopf bifurcation is shown to oc-
cur in the system resulting in a limit cycle behavior. Further, computation of phase portrait and
power spectrum for different values of a2 suggests a quasi-periodic route to chaos in the system.
In addition, to quantify the chaos that results on varying the attack/ kill rate in the model, the
spectrum of Lyapunov characteristic exponents (LCEs) have been computed [44]. It is shown
that a range of attack/kill rate parameter exists for which the phase space attractor of the present
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three species foodwebmodel evolves to a strange attractor and limit cycles. Fractals exhibiting self
similar structure or single scaling rule are termed as mono-fractal whereas multi-fractals follows
multiple scaling rules and scale dependent dimensions. The MFDFA method [19, 41] used in the
analysis allows for q- order extension of overall root mean square (RMS) amplitude fluctuation
(Fq), and leads to a power-law relation characterized by the q dependent Hürst exponent(Hq).
The observed decreasing trend ofHq , in the plot ofHq versus q captures the inherent multi-fractal
behavior. The fractal analysis of the time series obtained in the foregoing three species food web
model, further reveals the presence of multiple scaling exponents in their singularity spectrum- a
characteristic of multi-fractal behavior.

2 Mathematical Formulation of the Three-Species Food Chain Model

A simple mathematical model of vertical three species food web structure, involving the num-
ber X(prey) of species at the lowest level which are preyed upon by Y(predator)- the number of
species at the next higher level and Z(top predator)- the number of species at the top level which
preys upon Y may be written as [15],

dX

dT
= R0X

(
1− X

K0

)
− C1F1(X)Y, (1)

dY

dT
= F1(X)Y − F2(Y )Z −D1Y, (2)

dZ

dT
= C2F2(Y )Z −D2Z, (3)

where R0, K0, C1
−1 and C2 refer to intrinsic growth rate of X , carrying capacity of X , conver-

sion rate of prey to predator for species Y and conversion rate of prey to predator for species Z
respectively. In addition, D1 and D2 are the mortality rate of the predator Y and the predator Z
respectively. Following [33, 15], the functional responses are considered to be of Holling type II
i.e., Fi(U) = AiU

Bi+U
, i = 1,2 with Ai representing the asymptotic predator killing rate and Bi are

constants that correspond to the prey population level when killing rate per unit prey is half its
maximum value i.e., [F1(X)]X=B1

= A1

2 and [F2Y ]Y=B2
= A2

2 .

Eq.(1)-(3) may be reduced to the following non-dimensional form,
dx

dt
= x (1− x)− f1 (x) y, (4)

dy

dt
= f1 (x) y − f2 (y) z − d1y, (5)

dz

dt
= f2 (y) z − d2z, (6)

by substituting x = X
K0

, y = C1Y
K0

, z = C1Z
C2K0

and t = R0T . The functional responses Fi(U), i = 1,
2 may be rewritten in terms of new variables as:

fi (u) =
aiu

(bi + u)
. (7)

The reduced form of the three species food web model i.e., eq.(4)-(7) involves only six param-
eters namely di, ai, and bi (i = 1, 2) which correspond to the non-dimensional mortality rates,
attack/ killing rates (hereafter referred to as kill rate) and prey population levels respectively.
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It is observed that the system admits four non-negative equilibrium points Ej(x0, y0, z0), j =
1, · · · , 4, [20, 33] which are given as,

E1(x0, y0, z0) = [0, 0, 0] ,

E2(x0, y0, z0) = [1, 0, 0] ,

E3(x0, y0, z0) =

[
d1

(a1 − d1b1)
,
a1 − d1 − d1b1
(a1 − d1b1)2

, 0

]
, (8)

E4(x0, y0, z0) =

[
x0,

d2
(a2 − b2d2)

,
x0(a1 − b1d1)− d1

(1 + b1x0)(a2 − b2d2)

]
,

where in E4(x0, y0, z0) we have x0 = b1−1
2b1

+ 1
2b1

√
(b1 + 1)2 − 4b1a1d2

a2−b2d2 .

The linear stability of the above equilibrium points can be analyzed using the following Jaco-
bian of the system,

J(x, y, z) =

 xF1x + F1 xF1y xF1z

yF2x yF2y + F2 yF2z

zF3x zF3y zF1z + F3

 , (9)

where F1 =
[
(1− x)− a1y

1+b1x

]
, F2 =

[
a1x

1+b1x
− a2z

1+b2y
− d1

]
and F3 =

[
a2y

1+b2y
− d2

]
.

The equilibrium point E1(x0, y0, z0) = [0, 0, 0] is always unstable as the eigenvalues of the Ja-
cobian matrix are 1,−d1 and −d2 respectively. Similarly for the condition that a1

d1(1+b1)
< 1, the

equilibrium point E2(x0, y0, z0) = [1, 0, 0] is locally asymptotically stable.

In case of the equilibrium point E3(x0, y0, z0) =
[

d1
(a1−d1b1) ,

a1−d1−d1b1
(a1−d1b1)2 , 0

]
corresponding to

absence of the super-predator z, the asymptotic stability occurs for the case of a1b1y0
(1+b1x0)2

< 1 and
a2y0

d2(1+b2y0)
< 1.

For the co-existence of the species, considering only the positive interior equilibrium solution
denoted asE4 above, we find that the the Jacobian matrix at this equilibrium point may be written
as,

J(x0, y0, z0) =

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 , (10)

where P11 = −x0 + a1b1x0y0
(1+b1x0)2

, P12 = − a1x0

(1+b1x0)
, P13 = 0, P21 = a1y0

(1+b1x0)2
, P22 = a2b2y0x0

(1+b2y0)2
,

P23 = − a2y0
(1+b2y0)

, P31 = 0, P32 = a2z0
(1+b2y0)2

and P33 = 0.

The characteristic equation can therefore be written as,

λ3 + σ1λ
2 + σ2λ+ σ3 = 0, (11)
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where σ1 = −(P11 + P22), σ2 = (P11P22 − P12P21 − P23P32) and σ3 = P11P23P32. Thus based on
Routh-Hurwitz criteria, the equilibrium point is locally asymptotically stable if σ1 > 0, σ3 > 0
and σ1σ2 > σ3. On violation of these conditions, the system evolves to a nonlinear regime where
bifurcation phenomenon and chaos are observed.

Of the six parameters characterizing the system eq.(4)-(7), we investigate its global complex
dynamics by varying the kill rate parameter a2 of the super-predator while keeping the values
of other biological parameters of the system same as in [15, 33, 39]. The parameters values are
therefore a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.40 and d2 = 0.01.

Figure 1: Phase portrait for the system at a2 = 0.070with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.

In the present work, we observe that for 0.0602 ≤ a2 ≤ 0.07543, stable positive equilibrium
solutions for co-existence are possible. For the attack/ kill rate a2 = 0.070, we obtain the fixed
point solution for the system eq.(4)-(7), as x0 = 0.6666, y0 = 0.2000 and z0 = 14.2222 (Fig.1).
The steady state solution is observed to be linearly stable since σ1 = 0.2413, σ2 = 0.0382 and
σ3 = 0.0023 are such that the condition σ1.σ2 > σ3 for asymptotic stability is satisfied.

3 Numerical Simulation of Complex Dynamics

In this section we present the results of numerical simulation of the three species food chain
for different values of the kill rate parameter a2.

3.1 Quasi-Periodic Motion Leading to Chaos

Beside the range of values of the parameter a2 for which stable fixed point for the species to
coexist, we also observe a Hopf-bifurcation (stable equilibrium point→ stable limit cycle) in the
system, say for a2 = 0.07546 (Fig. 2a). Based on discrete Fourier transform (DFT) method [11],
the power spectrumof the time series of the speciesZ for different values of a2 have also been com-
puted to analyze the frequency distribution. For the parameter a2 = 0.07546, the power spectrum
for the limit cycle, shown in Fig. 2b, exhibit the presence of only one frequency. Subsequently,
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at a2 = 0.07708 the phase portrait and the corresponding power spectrum show the transition to
quasi-periodic dynamics (Fig. 2c,d). Increasing the value of the control parameter a2 to 0.0800,
the dynamics of the system switches to chaos (Fig. 2e,f). Therefore the increase of the kill rate
parameter a2 has been found to introduce unstable equilibrium points into the system dynamics
thus causing an extensive changes in the attractor dynamics which could be chaotic or at times
quasi-periodic as revealed in the following power spectrum (Fig. 4a-f).

x

x

x

Figure 2: a)Phase portrait for the system at a2 = 0.07546, b) Power spectra for the time series Z at a2 = 0.07546, c)Phase portrait for
the system at a2 = 0.07708, d) Power spectra for the time series Z at a2 = 0.07708, e)Phase portrait for the system at a2 = 0.08000,
f)Power spectra for the time series Z at a2 = 0.08000with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.
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3.2 Bifurcation Diagram and Spectral Analysis

Emergence of chaos is closely related to the existence of bifurcation. A bifurcation of a dy-
namical system occurs when the phase portrait changes its topological structure for some value
of the control parameter. Similarly, the power spectra of a time series provides the distribution of
power into various frequency component. For the nonlinear three-species model eq.(4)-(7), we
have computed the bifurcation diagram by plotting the successive maxima of the predator popu-
lation Z with increased killing rate a2 (Fig. 3). Since no significant change in the bifurcation plot
is observed in between a2 = 1.1 and a2 = 1.5, the maximum value for a2 is set to 1.5. The bi-
furcation diagram exhibit complex chaotic dynamics over considerable range of killing rate of the
predator Z. However, the bifurcation diagram also shows several windows over which the system
dynamics could be regular. For a2 = 0.10, the bifurcation diagram exhibit chaotic dynamics as
also illustrated in the corresponding power spectrum (Fig. 4a). With increase in the value of a2,
the system dynamics continues to be chaotic till a2 = 0.2480 where quasi-periodic motion sets in
(Fig. 4c). The power spectrum of Fig. 4d-f, belonging to the range 0.20 ≤ a2 ≤ 0.60 of the bi-
furcation diagram, illustrates the occurrence of several new time scales into the three species food
chain. Similarly, the bifurcation diagram for different values of a2 in the range 0.60 ≤ a2 ≤ 1.5
exhibit complex dynamics i.e. chaos, noisy quasi-periodic and limit cycle behavior as revealed in
the phase diagrams (Fig. 5a-d).

Figure 3: Bifurcation diagram of the system for variation of kill rate a2 with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.

3.3 Characterization of Dynamical Complexity Using Lyapunov Exponents

In the foregoing, we studied the complex dynamics exhibited by the tritrophic foodwebmodel
i.e., eq.(4)-(7), as the killing rate parameter a2 is increased. The bifurcation diagram (Fig. 3)
clearly shows the range of values of a2 for which the system exhibit chaotic behavior. The spec-
trum of Lyapunov characteristic exponents (LCEs) for a dynamical system further quantifies the
prevailing chaotic system dynamics. The LCEs are asymptotic measures characterizing the aver-
age exponential rate of divergence/ convergence of small perturbations in the phase space. For
a continuous 3-dimensional dissipative system, the attractor in the phase space is characterized
by the spectrum of LCE’s which involve three exponents (λ1, λ2, λ3). The attractor in the phase
space is termed as a strange attractor, two-torus, limit cycle and fixed point, if the LCE’s are of the
form (+, 0,−) , (0, 0,−) , (0,−,−) or (−,−,−) respectively.
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xx
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xx

Figure 4: Power spectra of the time series Z for a)a2 = 0.10, b)a2 = 0.20, c)a2 = 0.2480, d)a2 = 0.30, e)a2 = 0.4951, f)a2 = 0.60
with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.
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Figure 5: x-y plot for the system for a)a2 = 0.60, b)a2 = 0.80, c)a2 = 0.8748, d)a2 = 1.301 with a1 = 5.0, b1 = 3.0, b2 =
2.0, d1 = 0.4, and d2 = 0.01.

An attractor with a positive LCE corresponds to exponential divergence of two trajectories
with almost same initial condition and further results in unpredictable long term dynamics i.e.,
chaos, due to stretching and folding in phase space. The negative LCE correspond to a stable
periodic dynamics in phase space. Denoting the length of the principal axis of an ellipsoid as di,
i = 1, 2, 3 · · · , we define the i-th one dimensional LCE as:

λi = lim
t→∞

1

t
log2

(
di(t)

d0

)
, (12)

where t refers to time. The exponents have been computed in bits per unit time using the Wolf
et al.[44] algorithm. The algorithm has been run for different values of kill rate parameter a2
with time step size 0.01 and the asymptotic values of LCE’s are determined when t = 10000. For
the chaotic behavior of the system, the largest of the LCE’s λi, i = 1, 2, 3 must be positive. The
qualitative behavior of complex system dynamics, as observed in the bifurcation diagram (Fig.
3), is further quantified using the largest LCE computed for different a2. Fig. 6 illustrates the
variation of largest LCE with the increase in kill rate parameter a2.
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Figure 6: Variation of largest Lyapunov exponent with killing rate parameter a2.

In the present work, when the control parameter a2 is varied in the range 0.10 ≤ a2 ≤ 0.20, with
a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01 in the system eq.(4)-(7), the spectrum of
LCE’s are observed to converge to a form (+, 0,−). For example, for

a2 = 0.10 : λ1 = 0.004464, λ2 = 0.000252 and λ3 = −0.345645,

a2 = 0.18 : λ1 = 0.007906, λ2 = 0.000278 and λ3 = −0.693363,

a2 = 0.20 : λ1 = 0.009555, λ2 = 0.000178 and λ3 = −0.725519.

Therefore, the system exhibit strange attractor / chaos in such a range of values for a2. Fig.7 illus-
trates the time variation of LCE’s for the case of a2 = 0.20. In addition the LCE’s, for which the
system show quasi-periodic / limit cycle behavior for different values of a2, are:

a2 = 0.2480 : λ1 = 0.000315, λ2 = −0.005783 and λ3 = −0.758837,

a2 = 0.4951 : λ1 = 0.000300, λ2 = −0.000655 and λ3 = −0.887539,

a2 = 0.8748 : λ1 = 0.000733, λ2 = −0.000837 and λ3 = −0.930543,

a2 = 1.3010 : λ1 = 0.000314, λ2 = −0.002750 and λ3 = −0.951582,

Figure 7: Lyapunov exponents for the three-species food web for kill rate parameter a2 = 0.20 with a1 = 5.0, b1 = 3.0, b2 =
2.0, d1 = 0.4, and d2 = 0.01. The inset illustrates the details of convergence of λ1 and λ2.
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4 Multi-Fractal Analysis

A time series X(t) is said to be self similar or scale invariant if X(at) = aHX(t), where H is
the scaling exponent also called Hürst exponent. Similarly, if an object breaks into smaller parts
of itself but retaining its shape / structure, the object is termed as fractal, if its dimension is non-
integer. The fractal behavior of population time series of bird species having almost same average
abundance has been studied in [40]. The American redstart time series is shown to have fractal
dimension 1.62 while that of least flycatcher population time series 1.44, thereby suggesting that
the former species is prone to local extinction. It is noted that the changes in the self similarity or
scale invariance parameter of certain biomedical time series may reflect the transition to improved
pathological conditions [14]. Recently, fractal analysis has been applied to detect time-invariant
scaling in daily catch time series of smooth pink shrimp from the west coast of Vancouver Island
[30]. In ecology the fractal approach may provide valuable information about inherent mech-
anism driving the ecological systems and origin of complexity in the system may be linked to
understanding the origin of fractal scaling [12, 30, 31, 35, 40]. The self-similarity property of frac-
tals simplify substantially the ecological modeling of the phenomenon. Fractal approach provides
a tool to qualitatively describe objects that are extremely disordered and complex. Therefore it is
important to extend the study of dynamics of ecological systems to fractal analysis of the biologi-
cal time series obtained from these ecological models [12, 31]. But many time series do not exhibit
simple mono-fractal scaling behavior which can be accounted by single scaling exponent [17]. In
such cases multitude of scaling exponents is required for a full description of scaling behavior and
a multi-fractal analysis must be employed.

4.1 Multi-Fractal Detrended Fluctuation Analysis

In this section, MFDFA [19] has been adopted to investigate the scale invariance characteristics
of the time series of species X of the tritrophicmodel eq.(4)-(7), for different kill rate parameter a2.

We briefly outline below the various steps involved in themulti-fractal procedure to determine
different scales embedded in the time series of the species X.

Step 1: For the time series X = {xk, k = 1, · · ·N}, the profile Y(i) is first constructed as:

Y(i) ≡
N∑
k=1

[xk− < x >]; i = 1, 2, 3, · · · , (13)

Step 2: The profile is divided into non-overlapping segment of equal length s (scale). In case the
time series length N is not an exact multiple of s, then in order to consider the data points in the
remaining part, the profile is divided from the opposite end to give 2Ns segments in all.

Step 3: Find the local trend for each of the 2Ns segments by a least-square fit . The variance is
determined as:

F 2(ν, s) =
1

s

s∑
i=1

{Y[(ν − 1)s+ i]− yν(i)}2 , (14)
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for each segment ν = 1, 2, 3, · · · , Ns . The variance for each of the segment ν = Ns + 1, · · · , 2Ns is
given by:

F 2(ν, s) =
1

s

s∑
i=1

{Y[N − (ν −Ns)s+ i]− yν(i)}2 , (15)

where yν(i) is the local polynomial fitted to the data segment ν.

Step 4: Averaging over all the segments results in q-th order fluctuation function

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[F 2(s, ν)]q/2

}1/q

for q 6= 0, (16)

is obtained. Here the index variable q can assume any real value. Also eq.(16) provide standard
DFA analysis for q = 2. Further, the fluctuation function Fq(s) for q = 0 may be written as [19],

F0(s) = exp

{
1

4Ns

2Ns∑
ν=1

ln[F 2(ν, s)]

}
. (17)

For a given value of q, the generalized fluctuation function Fq(s) is computed for different time
scale s.

Step 5: Plot of log(Fq(s)) vs log(s) determines the scaling behavior of the fluctuation. For the time
series {xk, k = 1, · · ·N} to be long-range power-law correlated, the fluctuation function scales as,

Fq(s) ∼ sHq , (18)

whereHq defines the q-th order Hürst exponent or generalizedHürst exponent. For positive q, the
average fluctuation function Fq(s) is dominated mostly by the large variance F 2(ν, s). Therefore
Hq corresponds to the scaling behavior with large fluctuations for positive values of q. In a similar
wayHq with negative q describes the scaling behavior of segmentswith smaller fluctuations. Thus
for a time series, if Hq varies with q, it is termed as multi-fractal whereas if Hq remains constant
as q is changed, the time series is mono-fractal.
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Figure 8: The q-th order root mean square fluctuationFq verses scale s for (a) a2 = 0.10, (b) a2 = 0.60, with a1 = 5.0, b1 = 3.0, b2 =
2.0, d1 = 0.4, and d2 = 0.01.

In parameterizing the multi-fractal structure of a time series, the q-th order Hürst exponentHq

is only one type of several types of scaling exponents. The generalized Hürst exponent Hq is also
related to q-order mass exponent or scaling exponent tq as,

tq = qHq − 1. (19)

Since Hq is a constant for mono-fractal time series, tq varies linearly with q. For multi-fractal
behavior, tq varies nonlinearly with Hq .

Other measures of multi-fractal behavior of a time series are singularity exponent or Hölder
exponent hq and singularity dimension Dq and are defined as,

hq = t
′

q,

Dq = qhq − tq. (20)

The parameters hq andDq are also termed as singularity strength α and singularity spectrum
f(α) respectively in [38].
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Figure 9: Variation of the generalized Hürst exponentHq for the original time series (blue) and shuffled time series (magenta) with order q
for (a) a2 = 0.10, (b) a2 = 0.60, with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.

4.2 Multi-Fractality in Three-species Food Web Model

In our multi-fractal analysis, we choose the chaotic time series for the species X of the three-
species foodweb, corresponding to the parameter a2 = 0.10 and 0.60 and refer them as Case-I and
Case-II respectively. In Fig. 8(a,b), the plot between q-th order RMS fluctuations Fq(s) and the
scale s, for Case-I and II respectively clearly shows change in values of slope of regression lines
with increase in value of q. Therefore the time series in Case-I and Case-II are of multi-fractal
nature. Also, the observed linear relationship in Fig. 8(a,b) establishes the long-range power-law
in the data for these cases.

A time series is termed as persistent and showing long-memory if the q-th order Hürst expo-
nent Hq > 0.5. For Hq = 0.5, the time series is completely random. If Hq < 0.5, the time series
is anti-persistent and exhibit negative autocorrelation. Further, for mono-fractal fractal behavior
Hq does not change with the order q while for multi-fractal behavior Hq decreases with order q.
For Case-I and II, the plot of q-th order Hürst exponent H(q) with order q, shown in Fig. 9(a,b),
therefore provide evidence for the multi-fractal nature of the biological time series [12, 17, 30].
A random shuffling of the time series results in uncorrelated data for which the Hü rst exponent
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Hq remains constant as also shown in Fig. 9(a,b). For Case-I and II, we find that H2 = 1.996 and
H2 = 1.323 respectively. Since the values exceed 0.5, both the time series are non-stationary and
exhibit long-range power-law correlation. Therefore both time series of the species X are positively
correlated in a power-law fashion.

Figure 10: Singularity spectrumDq−Hq for original time series (blue) and shuffled time series (magenta) for (a) a2 = 0.10, (b) a2 = 0.60,
with a1 = 5.0, b1 = 3.0, b2 = 2.0, d1 = 0.4, and d2 = 0.01.

Using eq.(19)-(20), the mass exponent (tq), the singularity or Hölder exponent (hq) and the sin-
gularity spectrum (Dq) are computed. For mono-fractals, the shape of singularity spectrum is a
point while it is a humped curve for multi-fractals. The difference between maximum and mini-
mum value of hq in the singularity spectrum defines the width of the spectrum, ∆hq and provides
the extent of multi-fractality of a time series. On reshuffling the time series , the correlation be-
tween the successive data points getsminimized. As a result thewidth of the singularity spectrum
∆shuf
hq

of reshuffled series is expected to be lower than that of the original time series [18]. Fig.
10(a,b) shows the multi-fractal singularity spectrum for Case-I and Case-II respectively. The re-
sults of random shuffling the time series are also shown in these plots (magenta color). Since
∆hq

> ∆shuf
hq

for both Case-I and Case-II, we conclude that the log-range correlation present in
the original time series is responsible formulti-fractal behavior of the species time series X. Similar
results are obtained for the corresponding species Y and Z time series.
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5 Conclusion

The effect of varying super predator killing rate parameter a2 on the three species food chain
model has been explored analytically and numerically with a view to understand the inherent
complex chaotic temporal behavior of the evolution of the species population. We have shown the
existence of stable equilibrium point for the coexistence of the three species for the super preda-
tor kill rate parameter a2 lying in the range 0.0602 ≤ a2 ≤ 0.07543. The transition from stable
equilibrium state to limit cycle behavior is observed for the kill rate parameter a2 = 0.07546 as a
result of Hopf bifurcation of the system. Subsequent increase in a2 values sets in quasi-periodic
and chaotic dynamics in the system as revealed through its respective phase portrait and power
spectrum (Fig.2). The dynamical complexity of the system is further investigated using the bifur-
cation diagram, power spectrum and phase plots which along with the LCE’s for different values
of the parameter a2 characterize the system dynamics. Specific values of a2 are observed for which
the system exhibit chaotic dynamics or an strange attractor.

Using theMFDFA analysis, in the present study, we have shown the existence of scale invariant
characteristics of the time series X of the system obtained for different a2 values by finding the
behavior of Hürst exponent Hq (Fig. 9a,b) and the singularity spectrum (Dq vs hq) in each cases
(Fig. 10a,b). The detection of multi-fractality in a time series provides a basis for the intermittent
behavior in the time series of the species X . It is to be noted that crashes in super predator Z
causes significant increase/ swings in the population Y and X whereas the increase in Z results
in the damping of the tendency for increase in Y and X till Y crashes. This will subsequently
results in crashes in Z and X reaching a maximum and the process cycle begins again. Since the
timing of the sequence of such events vary erratically, intermittency sets in. The scale dependent
measure of eq.(18) is described by the scaling exponentHq which numerically defines the power
law relation of the intermittent periods with large variation when q is positive and periods with
small variation when q is negative. The observed behavior of the multi-fractal spectrum and other
foregoing parameters clearly suggests multi-fractal nature of the considered time series data and
also suggest a long-range correlation in the data.
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